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7. REPRESENTATIONS OF 

FINITE GROUPS 
 

§ 7.1. Review of Relevant Linear Algebra 
 As we saw earlier, every finite group is isomorphic 

to a group of matrices. The advantage of the matrix 

disguise is that we can use all the resources of linear 

algebra. So to help us study a particular group, G, we 

consider matrix groups that are isomorphic to (or more 

generally, homomorphic images of) G. 

 But first a quick review of linear algebra. You 

remember that square matrices have determinants and 

that the determinant of a product is the product of the 

determinants. They also have eigenvalues and these are 

related to the determinant in that the determinant of a 

matrix is the product of its eigenvalues. The sum of the 

eigenvalues is another important quantity associated with 

a matrix – it’s the trace. 

 The trace of a matrix is simply the sum of its 

diagonal entries. The off-diagonal components are 

ignored. With so much information thrown away it’s 

amazing that it’s of much use. In linear algebra trace is 

hardly mentioned. We learn that trace is equal to the sum 

of the eigenvalues and so it’s a useful little check on 

eigenvalue calculations. That’s all. But for representation 

theory it will become our most valuable tool! 

 You’ll need to recall that similar matrices have the 

same eigenvalues, and hence the same determinant and, 
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most importantly, the same trace. Remember too that if a 

matrix satisfies a polynomial equation the eigenvalues 

satisfy the same equation. Since we’ll be dealing with 

finite groups the matrices that will arise in our 

representations will satisfy equations of the form Am = I. 

The eigenvalues will therefore be roots of unity. 

 Associated with eigenvalues are eigenvectors. A 

matrix is diagonalisable (similar to a diagonal matrix) if 

and only if it there’s a basis of eigenvectors. Matrices of 

finite order are diagonalisable so all the matrices that arise 

in the representation of finite groups will be 

diagonalisable. 

 Finally you’ll need to know a little of the theory of 

inner product spaces. These are vector spaces with an 

inner product u | v satisfying certain axioms. The square 

of the length of a vector u is u | u and a unit vector is 

one whose length is 1. Two vectors u, v are orthogonal 

if u | v = 0 and an orthonormal basis is a basis of 

mutually orthogonal unit vectors. 

  

§ 7.2. Representations 
 A representation of degree n 

of a group G over the field F is 

defined to be a homomorphism 

: G→ GL(n, F) for some n. By the first isomorphism 

theorem the image of a representation  is a group of n  

n matrices that’s isomorphic to the quotient group 

G/ker(). 
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 A linear representation is a representation of 

degree 1. This is an important special case. Of course a 1 

 1 matrix behaves like its one and only component so a 

linear representation is essentially a homomorphism to F#, 

the group, under multiplication, of the non-zero elements 

of the field F. 

 Among the linear representations is the so-called 

trivial representation. The trivial representation is (g) 

= 1 for all g  G. Not very exciting perhaps, but the trivial 

representation is as important to representation theory as 

the number 0 is to arithmetic or the empty set to set 

theory. The trivial representation squeezes the group 

entirely into one element so that no information about the 

group remains. The kernel of the trivial representation is 

the whole group. At the other end of the spectrum are the 

faithful representations. 

A representation is faithful if its kernel is trivial. 

The image under a faithful representation is isomorphic 

to the group itself. It might seem that these are the best 

representations because they don’t lose any information. 

But a suitable collection of unfaithful representations is 

usually more useful. 

 

Example 1: 

 The following are some of the representations of 

the Klein Group V4 with presentation 

A, B | A2, B2, AB = BA. 

 To begin with there’s the trivial representation: 

(1) = 1, (A) = 1, (B) = 1, (AB) = 1. 
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Then there are three other linear representations. Since 

every element of the group satisfies g2 = 1, a linear 

representation must map each element to a complex 

number satisfying x2 = 1. So the linear representations of 

G are: 

 1 A B AB 

 1 1 1 1 

 1 1 −1 −1 

 1 −1 1 −1 

 1 −1 −1 1 

 

Then there’s a faithful representation that maps A to 







−1 0

0  1
  B to 







1  0

0 −1
 , and AB to 







−1  0

0  −1
 . 

 

 If G is a group of permutations we can represent 

each element g by the corresponding permutation matrix, 

(aij) where: 

                             aij = 


1 if g(i) = j

0 if g(i)  j
  

 

Such a representation is called a permutation 

representation. It will always be faithful. 

 Cayley’s theorem shows that every finite group can 

be considered as a group of permutations on itself since, 

for  g  G, the map  x→xg  is a permutation  (g)  of G 

and  is a homomorphism. If G has order n we can 

represent  (g)  by an  n  n  permutation matrix.  This 
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permutation representation is called the regular 

representation. 

 

Example 2: The regular representation for V4 above is: 

I→








1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , A→








0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , B→








0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , AB→








0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 . 

 

Two representations ,  are equivalent if there’s an 

invertible matrix S such that: 

(g) = S−1 (g) S for all g  G. 

 

Example 3: 

The representations of A | A3 = 1 include: 

 I A A2 

1 1 1 1 

2 1  2 

3 






1 0

0 1
  







0 −1

1 −1
  







−1 1

−1 0
  

4 







100

010

001
  







010

001

100
  







001

100

010
  

1 is the trivial representation. 

1, 2 are linear representations. 

2 – 4 are faithful representations. 

4 is the regular representation.
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Example 4: 

The representations of S3 include: 

 I (123) (132) (12) (13) (23) 

1 1 1 1 1 1 1 

2 1 1 1 −1 −1 −1 

3 






1 0

0 1
  







0 −1

1 −1
  







−1 1

−1 0
  







0 1

1 0
  







1 −1

0 −1
  







−1 0

−1 1
  

4 






1 0

0 1
  







1 0

0 1
  







1 0

0 1
  







1   0

0 −1
  







1   0

0 −1
  







1   0

0 −1
  

5 






10

01
  







 0

02   






2 0

0 
  







01

10
  







02

 0
  







0 

20
  

6 







100

010

001
  







010

001

100
  







001

100

010
  







010

100

001
  







001

010

100
  







100

001

010
  

where  = e2i/3. Also the following, 7: 
I (123) (132) 











100000

010000

001000

000100

000010

000001

  











010000

001000

100000

000010

000001

000100

  











001000

100000

010000

000001

000100

000010

  

 

(12) (13) (23) 











000100

000001

000010

100000

001000

010000

  











000010

000100

000001

010000

100000

001000

  











000001

000010

000100

001000

010000

100000
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• 1, 2 are linear representations; 3, 4 and 5 have 

degree 2, 6 has degree 3 and 7 has degree 6. 

• 1 is the trivial representation. 

• 6 and 7 are permutation representations. 

• 7 is the regular representation. 

• 3, 5, 6 and 7 are faithful. 

• 3 is equivalent to 5 since S−13(g)S = 5(g) where 

S = 






1  1

  1+
 . 

 

§ 7.3. Characters of Groups 
 As rich as matrices are, they’re a little too bulky. 

So instead of considering the matrices themselves we 

consider their traces. 

 The trace of a matrix is the sum of the diagonal 

components so it’s a very easy quantity to calculate – 

much easier than determinants or eigenvalues. But it’s 

closely related to eigenvalues in that the trace of a matrix 

is the sum of the 

eigenvalues. And 

similar matrices have 

the same trace. 

 

 The character over a field F of a representation  

of a finite group G is the map : G → F defined by: 

(g) = trace (g). 
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Example 5: 

The character of 5, in Example 3, is: 

 

 I (123) (132) (12) (13) (23) 

5 2 −1 −1 0 0 0 

Remember that 1 +  + 2 = 0. 

 

Concepts such as ‘degree’, ‘faithful’ ‘regular’ and 

‘trivial’ extend to characters. So the regular character of 

S3 is the character of the regular representation, 7, in 

example 2.  It is: 

 I (123) (132) (12) (13) (23) 

 6 0 0 0 0 0 

 

Theorem 1: 

(1) Equivalent representations have the same character. 

(2) Characters are constant on conjugacy classes. 

Proof: Both of these follow from the fact that similar 

matrices have same trace. For example if the 

representation  is equivalent to  then there exists an 

invertible matrix S such that (g) = S−1(g)S and, being 

similar, these have the same trace. ☺ 

 

 We can easily read off the degree of a character 

(meaning the degree of the corresponding representation) 

by simply looking at its value on 1. 
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Theorem 2: The degree of a character  is (1). 

Proof: If  is the representation of degree n that 

corresponds to the character  then (1) is the n  n 

identity matrix whose trace is n. ☺ 

 

 There’s a shortcut we can use for permutation 

representations. We can pass directly from the 

permutations to the character without having to think 

about the matrices. 

 

Theorem 3: If  is a permutation character, (g) is the 

number of symbols fixed by g. 

Proof: If  is the permutation representation itself then 

the i-j entry of (g) is 1 if g(i) = j and it is 0 otherwise so 

(g) is simply the number of 1’s on the diagonal. ☺ 

 

Example 6: If G = S4 and  is the permutation character, 

((123)) = 1, since (123) fixes 1 element, ((12)) = 2, (I) 

= 4 and ((1234)) = 0. 

 

Theorem 4: If  is a character of G over ℂ of degree n 

and g  G has order m then (g) is a sum of  n  numbers, 

each of which is an  mth  root of 1. 

Proof: If gm = 1 and  is the corresponding representation 

then (g)m is the n  n identity matrix I. The matrix (g) 

is thus an n  n matrix and so has  n  eigenvalues over ℂ. 

Each of these must satisfy the equation m = 1 and so be 

an mth root of 1. ☺ 
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Example 7: If g is an element of order 2 and  is a 

character of degree 3, corresponding to the representation  

, then the eigenvalues of    will be 1. So (g)  {3, 1, 

−1, −3}. If  g  has order 3 and    is a character of degree 

2, corresponding to the representation  , then the 

eigenvalues of    will be two values chosen from 1, , 

2, with possible repetitions. The possibilities for (g) are 

thus 2, 2, 22, 1 +  = −2, 1 + 2 = − and  + 2 = 

−1. 

 

Theorem 5: The characters, over ℂ, of an element of 

finite order and its inverse are complex conjugates. 

Proof: The eigenvalues of (g−1) are the inverses of those 

for (g). But these eigenvalues are roots of unity and so 

lie on the unit circle. Hence their inverses are the same as 

their conjugates. And the sum of these conjugates is the 

conjugate of the sum. ☺ 

 

Example 8: If  is a character of a group of permutations 

and ((1234)) = 1 + 3i then ((1432)) = 1 − 3i. 

 

Theorem 6: If  is the character of a representation  over 

ℂ of degree n of a finite group G and g  G then 

|(g)|  n. 

Proof: If the eigenvalues of (g) are 1, 2, …, n then 

|1 + 2 + … n|  |1| + |2| + … |n| = n. ☺ 
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Theorem 7: (g) = deg  if and only if g  ker(). 

Proof: Let n = deg . The sum of  n  roots of 1 is equal to  

n  if and only if they’re all 1. If   is a corresponding 

representation then (g), is diagonalisable with all its 

eigenvalues equal to 1 and so must be the identity matrix. 
☺ 

 

Example 9: The characters of the above representations 

1  to  7 of S3 are: 

 I (123) (132) (12) (13) (23) 

1 1 1 1 1 1 1 

2 1 1 1 −1 −1 −1 

3 2 −1 −1 0 0 0 

4 2 2 2 0 0 0 

5 2 −1 −1 0 0 0 

6 3 0 0 1 1 1 

7 6 0 0 0 0 0 

 

Example 10: The characters of S4 include the following. 

(Since all permutations with a given cycle structure are 

conjugate they have the same characters, so we need only 

list the characters by cycle structure.) 

I () () () ()()  

1 1 1 1 1 trivial 

1 −1 1 −1 1 odd/even 

4 2 1 0 0 permutation 

24 0 0 0 0 regular 
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§ 7.4. Class Functions 
 A class function for G over a field F is a map: 

G→F which is constant on conjugacy classes. 

 

Example 11: Some class functions for S3 are: 

I (12) (13) (23) (123) (132) 

17 −5 −5 −5   

−42 ¾ ¾ ¾ 1+i 1+i 

1 1 1 1 1 1 

 

Theorem 8: The set of class functions of a group G over 

a field F is a vector space CF(G, F) over F and its 

dimension over F is the number of conjugacy classes of 

G. 

Proof: It’s easily checked that the class functions form a 

vector space under the usual operations.  A basis is the set 

of class functions, which take the value 1 on some 

conjugacy class and 0 on the others. The number of these 

is the number of conjugacy classes. ☺ 

 

Example 12: A basis for the space of class functions of 

S3 over ℂ is: 

 I (12) (13) (23) (123) (132) 

e1 1 0 0 0 0 0 

e2 0 1 1 1 0 0 

e3 0 0 0 0 1 1 
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The class functions given in Example 11 are expressible 

(uniquely) as linear combinations of e1, e2, e3 as: 

17e1 −5e2 + e3; 

−42e1 + ¾e2 + (1 + i)e3 and 

e1 + e2 + e3. 

 

 A character  is reducible if  =  +  for some 

characters , . If not, it is irreducible. Irreducible 

characters are the basic building blocks of group 

characters. 

 

Theorem 9: Linear characters are irreducible. 

Proof: Suppose  is linear. If  =  +  for characters  

and , then deg  = deg  + deg   2, a contradiction. 
☺ 

 

Theorem 10: Every character is a sum of irreducible 

characters. 

Proof: We prove this by induction on the degree of a 

character. If  is reducible,  =  +  for characters , 

. By induction, each is a sum of irreducible characters 

and hence so too is . ☺ 

 

 Certainly if a character is linear we know that it’s 

irreducible. But there are irreducible characters of larger 

degrees. For example 3 in Example 9 is irreducible. How 

can we know this? After all it can be broken up as the sum 

of the two class functions  and . 
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 I (123) (132) (12) (13) (23) 

3 2 −1 −1 0 0 0 

 1 −1 + i −1 + i 1 1 1 

 1 −i −i −1 −1 −1 

 

 How do we know that  and  aren’t characters? 

That’s not difficult because if  was a character −1 + i 

would have to be a cube root of 1. 

But how do we know that there isn’t some other 

decomposition in which the pieces are both characters? 

The answer is to make the space of class functions into an 

inner product space. 

 From now on we will be doing what is called 

ordinary representation theory. This simply means that 

the field over which we operate is ℂ, the field of complex 

numbers. One can do representation theory over other 

fields but sometimes things don’t go as nicely as they do 

over ℂ. There are three reasons. Finite fields involve 

primes that can give problems if they divide the group 

order. In ℂ no element (except the identity) has finite 

additive order, or to use technical terminology, ℂ has 

‘characteristic zero’. But ℝ and ℚ also have characteristic 

zero. What’s wrong with them? Their trouble is that 

they’re not algebraically closed. We may get matrices that 

fail to have eigenvalues in ℝ or in ℚ, which makes life 

more complicated. The third reason why ℂ works so 

beautifully is that we can exploit the concept of complex 

conjugates. 
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We make CF(G, ℂ) into an inner product space by 

defining the inner product of two class functions by 

| = 



Gg

gg
G

)()(
1

 . 

Example 13: In the above table all three rows represent 

class functions. 

3| = 
1

6
 [2 + 2(−1)(−1−i) + 0] 

           = 
1

6
 (4 + 2i) and 

 | = 
1

6
 [1 + 2(−i)( i) + 3(−1)(−1)] = 1. 

 

§ 7.5. The Fundamental Theorem of 

Characters 
Theorem 11: (Fundamental Theorem of Characters) 

The irreducible characters of a finite group G over ℂ form 

an orthonormal basis for CF(G, ℂ). ☺ 

 

 We won’t be proving this theorem. To do so would 

take us far from group theory into ring theory and the 

theory of modules over non-commutative rings. Instead 

we’ll examine the consequences of this important 

theorem. 

 

Theorem 12: The number of irreducible characters of a 

finite group G, over ℂ is equal to the number of conjugacy 

classes of G. 
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Proof: We saw already that the dimension of CF(G, ℂ) 

over ℂ is the number of conjugacy classes. ☺ 

 

Theorem 13: If ,  are distinct irreducible characters of 

a finite group G over ℂ: 

( ) ( )g g
g G




 = 0 . 

Proof: Distinct irreducible characters are orthogonal 

class functions. ☺ 

 

Theorem 14: If  is an irreducible character of a finite 

group G over ℂ then: 

( )g G
g G

2



 = . 

Proof: Irreducible characters have unit length. ☺ 

 

Theorem 15: Suppose G is a finite group with irreducible 

characters 1, ... , n over ℂ.  If  is any character, 

expressible as a sum of irreducible characters by 

 = mii then: 

(1) for each i, mi = i | i; 

(2) | = mi
2. 

Proof: 

(1)  |i = mjj|i = mii|i = mi.   
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(2)   | = 
i,j=1

n

  mimj i | j  

                 =  
i=1

n

  mi
2 i | i  by orthogonality 

                 = 
i=1

n

  mi
2  since each |i| = 1. ☺ 

. 

Corollary: A character  is irreducible if and only if 

 |  = 1. 

 

Theorem 16: If  is the regular character and 1, ... , k 

are the irreducible characters with degrees n1, ... ,nk then 

 = nii. 

Proof: (g) = |G| if g = 1 and 0 otherwise. 

So  | i = ni. ☺ 

 

Theorem 17: If 1, ... , k are the irreducible characters 

with degrees n1, ... ,nk then ni
2 = |G|. 

Proof: If  is the regular character,  |  = |G| = ni
2. 

☺ 
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§ 7.6. Character Tables 
 The character table for a finite group G, over ℂ, 
gives the value of each irreducible character on each 

conjugacy class. Denote the value of i on an element of 

the conjugacy class j by i(j) or more simply as ij. 

Because the number of irreducible characters is equal to 

the number of conjugacy classes the table is square. It’s 

also useful to record the sizes of the conjugacy classes and 

the orders of their elements as extra parts of the character 

table. 

 

class 1 = {1} 2 ... k 

size 1 h2 ... hk 

1 1 1 ... 1 

2 n2 22 ... 2k 

... ... ... ... ... 

k nk k2 ... kk 

order 1 m2 ... mk 

 

Theorem 18: The character table of a finite group G, over 

ℂ, has the following properties: 

(1) h Gi

i

k

=

 =
1

; 

(2) n Gi

i

k
2

1=

 = ; 

(3) h
if i j

G if i jt it jt

t

k

 
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 (orthogonality of the columns). 

(Here ij is the value of the irreducible character i on the 

elements of the conjugacy class j, 

          ni is the degree of i and 

          hj is the size of j.) 

Proof: (1) is just the class equation; 

            (2) is theorem 17; 

            (3) is the fundamental theorem of characters 

(Theorem 11). 

 

If A is the matrix (aij) where aij = hj/|G| ij  then (3) 

implies that A is a unitary matrix, that is A A* = I where 

A* is the conjugate transpose of A. 

It follows that A*A = I which gives (4). ☺ 

 

Example 14: The following is the character table for a 

certain group G. 

class 1 2 3 4 

size 1 3 4 4 

1 1 1 1 1 

2 1 1  2 

3 1 1 2  

4 3 −1 0 0 

order 1 2 3 3 

Here  and 2 are the two non-real cube roots of unity. 

Remember that they’re conjugates of one another. And 
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never forget that 1 +  + 2 = 0. That often comes in 

handy! 

 We can see that |G| = 1 + 3 + 4 + 4 = 12. Note too 

that 12 = 12 + 12 + 12 + 32, the sum of squares of the 

degrees of the irreducible characters. 

G has 3 elements of order 2 (in 2) and 8 of order 3 (in 

each of 3 and 4). 

 

 Note the orthogonality of the rows.  For example 

with 2 and 3 we get: 

1.1 + 3.1.1 + 4.. + 4.2.2 = 4 + 42 + 4 = 0. And 

the sums of squares of the moduli of the entries along each 

row (suitably weighted by the class sizes) are all 12. 

Along the second row it is: 

12 + 3(12) + 4||2 + 4|2| = 12 

and along the third row it is: 

32 + 3.12 + 4.0 + 4.0 = 12. 

 Note the orthogonality of the columns. For 

example taking the 3rd and 4th columns we get 1.1 + . 

+ .2.2 = 1 + 2 +  = 0. Taking the sum of squares of 

the moduli down each column you get the order of the 

group, 12, divided by the class size. For example, down 

column 2 we get 1 + 1 + 1 + 1 = 4 = 12/3 and down column 

4 we get 1 + 1 + 1 + 0 = 3 = 12/4. 

 The “−1” entry is the trace of a 3  3 matrix. This 

is the sum of the three eigenvalues.  Now each of these 

eigenvalues must be 1 since the elements of 2 have 

order 2. So we can infer that the eigenvalues are 1, −1, −1. 

The zero entries in the last row are each the sum of 3 cube 
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roots of unity. The only way to get a zero sum from 3 cube 

roots of unity is to take exactly one of each. So we can 

infer that the 3  3 matrices that arise here must have 

distinct eigenvalues 1,  and 2. 

 1 is clearly the trivial character. The regular 

character: [12,  0,  0,  0] is expressible as a sum of 

irreducible characters as 1 + 2 + 3 + 34. 

 As can be seen a considerable amount of 

information about the group (and the representations 

themselves) can be recovered from the character table. Of 

course one has to know something about the group in the 

first place to be able to construct the character table. But 

we can learn new things about a group by using 

characters. 

 

§ 7.7. Examples of Character Tables 
Example 15: The character table of the trivial group 1 is: 

class 1 

size 1 

1 1 

order 1 

 

Example 16: The character table of C2 = A|A2 = 1 is: 

class 1 A 

size 1 1 

1 1 1 

2 1 −1 

order 1 2 
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Since the group generated by the integer −1 is C2, we have 

a representation by 1  1 matrices: 1 → (1), A → (−1) and 

the character of this linear character is 2. Since the sum 

of squares of the degrees of 1 and 2 is 2, the order of C2, 

these are the only irreducible characters. 

 

Example 17: The character table of C3 = A|A3 = 1 is: 

class 1 A A2 

size 1 1 1 

1 1 1 1 

2 1  2 

3 1 2  

order 1 3 3 

 

Clearly the character tables of cyclic groups are easily 

calculated. For Cn there are n linear characters, 

expressible in terms of n’th roots of unity. 

 

Example 18: 

The character table of V4 = A, B|A2 = B2 = 1, BA = AB 

is:  

class 1 A B AB 

size 1 1 1 1 

1 1 1 1 1 

2 1 1 −1 −1 

3 1 −1 1 −1 

4 1 −1 −1 1 

order 1 2 2 2 
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Viewed as 1  1 matrices these are clearly representations. 

In the next chapter we will see how to manufacture the 

character table of a direct product out of the character 

tables of the factors and, as a result, we will be able to 

easily calculate the character table of any finite abelian 

group. So let us turn our attention to the smallest non-

abelian group. 

 

Example 19: The character table of S3 is:  

class 1 () () 

size 1 2 3 

1 1 1 1 

2 1 1 −1 

3 2 −1 0 

order 1 3 2 

 

1 is, as usual, the trivial character. 
2 is the character that maps even permutations to 1 and 

odd permutations to −1. 

By the Fundamental Theorem of characters, since 

there are only 3 conjugacy classes, there must be only 3 

irreducible characters. So 3 has to be found. 

 Suppose the degree of 3 = n. Since the sum of 

squares of the degrees has to total the group order, we 

have 12 + 12 + n2 = 6 and so n = 2. Using orthogonality of 

columns we can complete the table as above. 
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 Here we’ve used fairly simple techniques. For 

larger groups we need to develop more advanced 

techniques, which we do in the next chapter. 
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EXERCISES FOR CHAPTER 7 

 

EXERCISE 1: 

Examine the following character table for a finite group 

G and answer the following questions. Give adequate 

reasons for your answers. 

 1 2 3 4 

1 1 1 1 1 

2 3 −1 0 0 

3 1 1  2 

4 1 1 2  

(a) What is |G|? 

(b)  Find the sizes of the conjugacy classes. 

(c) Find the orders of the kernels of each of the 

corresponding irreducible representations. 

(d) Which of the irreducible characters are faithful? 

(e) Find the order of the elements in each conjugacy 

class. 

 

EXERCISE 2: Complete the following character table, 

giving brief explanations as to how each entry is obtained. 

 1 2 3 4 5 

1      

2 1 i 1   −1 

3  0 −1 0 0 

4 1  1 −1 1 

5 1 −i 1  −1 
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EXERCISE 3: For the character table obtained in 

exercise 2, compute the size and the order of the elements 

of each of the conjugacy classes. 

 

EXERCISE 4: Examine the following character table for 

a finite group G and answer the following questions. Give 

adequate reasons for your answers. 

 1 2 3 4 5 6 7 

1 1 1 1 1 1 1 1 

2 1 1 1 1 −1 −1 −1 

3 1 1  2 1  2 

4 1 1 2  1 2  

5 1 1  2 −1 − −2 

6 1 1 2  −1 −2 − 

7 6 −1 0 0 0 0 0 

(a) What is |G|? 

(b) Find the sizes of the conjugacy classes. 

(c) Find the orders of the kernels of each of the 

irreducible representations. 

(d) Which of the irreducible representations are faithful? 

(e) Draw the lattice diagram for all the normal subgroups 

of G. 

(f) Find Z(G) and G. For each of them identify which 

conjugacy classes they are built up from and give a well-

known group that it is are isomorphic to. 

(g) Find the order of the elements in each conjugacy 

class. 
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(h) Express the following character as a sum of 

irreducible characters: 

 

 1 2 3 4 5 6 7 

 14 7 2 2 −6 0 0 

 

EXERCISE 5: Examine the following character table 

for a finite group G and answer the following questions. 

Give adequate reasons for your answers. 

 

 1 2 3 4 5 6 7 8 9 

1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 −1 −1 1 1 

3 −1 2 2 −1 −1 0 0 −1 2 

4 1 1 1 −1 1 −1 1 −1 −1 

5 1 1 1 −1 1 1 −1 −1 −1 

6 −1 2 2 1 −1 0 0 1 −2 

7 −2 −2 2 0 2 0 0 0 0 

8 1 −2 2 3i −1 0 0 −3i 0 

9 1 −2 2 −3i −1 0 0 3i 0 

 

(a) How many conjugacy classes does G have? 

(b) Which conjugacy class is {1}? 

(c) What is |G|? 

(d) Find the sizes of the conjugacy classes. 

(e) Find the orders of the kernels of each of the 

irreducible representations. 

(f) Which of the irreducible representations are faithful? 
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(g) Draw the lattice diagram for all the normal 

subgroups of G. 

(h) Find Z(G) and G. Identify which conjugacy classes 

they are built up from and describe a well-known group 

that they are isomorphic to. 

(i) How many of the elements of G have order 3? 

 

EXERCISE 6: Complete the following character table, 

giving brief explanations as to how each entry is 

obtained. 

 

 1 2 3 4 5 6 7 8 

size  3 3 16 3 3  3 

1   −1   −1  −1 

2     1    

3 1  1  1 1  1 

4 1  1 2 1 1  1 

5 3  −1+2i  −1 1  −1−2i 

6         

7 3  1  −1 −1−2i  1 

8     −1 −1+2i   

order 1  4 3 2 4  4 

 

EXERCISE 7: Complete the following character table, 

giving brief explanations as to how each entry is 

obtained. 
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 1 2 3 4 5 6 7 

size 1 1 6 4 4 4 4 

1        

2 1 1 1   2  

3 1 1 1 2    

4 2   −    

5 2   −2    

6      1  

7        

order 1  4 3    
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SOLUTIONS FOR CHAPTER 7 
 

EXERCISE 1: (a) 12; (b) 1, 3, 4, 4; (c) |ker 1| = 12, |ker 

2| = 1, |ker 3| = |ker 4| = 4; (d) 2; (e) 1, 2, 3, 3. 

 

EXERCISE 2: None of 2 to 5 are the trivial character 

so 1 must be trivial. Since i is not real its conjugate −i 

must appear in that row, so 4 = 2
−1. We can therefore 

complete columns 2 and 4. By orthogonality of columns 

1 and 3 we deduce that deg 3 = 4. The character table is 

thus: 

 

 1 2 3 4 5 

1 1 1 1 1 1 

2 1 i 1 −i  −1 

3 4 0 −1 0 0 

4 1 −1 1 −1 1 

5 1 −i 1 i −1 

 

EXERCISE 3: The group has order 20.  We can now 

compute the sizes of the conjugacy classes: 1, 5, 4, 5, 5. 

Since the order is even the group must contain elements 

of order 2. Their characters must be real so the elements 

of order 2 must lie in 3 or 5 or both. But the centraliser 

of an element in 3 has order 5, so the elements of order 

2 must lie in 5. Also since the group order, 20, is divisible 

by 5 there must be elements of order 5. Clearly these can’t 

lie in 2 or 4 since  i  has order 4. So they must lie in 3. 
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Of course the only element of 1 has order 1, so that just 

leaves 2 and 4. Since 4 = 2
−1 they must all have the 

same order. This must divide 20 and, since  i  has order 4, 

their order must be divisible by 4. Thus they have order 

exactly 4. The orders of the elements of the conjugacy 

classes are thus 1, 4, 5, 4, 2 respectively. 

 

EXERCISE 4: 

(a) 42;                                (b)1, 6, 7, 7, 7, 7, 7 

(c) 42, 21, 14, 7, 7, 1;        (d) 7 

(e) 

                            G 

 

            H                    K 

 

 

                            L 

 

 

                           1 

H = 1 + 2 + 5,    K = 1 + 2 + 3 + 4,   L = 1 + 2 

 

(f) Z(G) = 1, G = L  C7 

 

(g) Since L  C7 the elements of 2 have order 7. Since 

|G| = 42 there must be elements of order 2, 3. The only 

class that could contain elements of order 2 is 5. By 

considering the linear characters we see that the order of 

the elements of 6, 7 is a multiple of 6. The only 
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multiples of 6 dividing 42 are 6 and 42 and G is clearly 

not cyclic. So the elements of 6, 7 must have order 6 

leaving the elements of 3, 4 being the ones of order 3. 

(Note that since 4 = 3
−1 and 7

−1 = 6 the elements in 

each of these pairs of conjugacy class have the same 

order.) 

The elements of have orders  1, 7, 3, 3, 2, 6, 6 

 

(h)  = m11 + ... + m77 where mi = |i so 

 = 1 + 32 + 25 + 26 + 7. 

 

EXERCISE 5: 

(a) 9 conjugacy classes; 

(b) 3 (largest modulus); 

(c) |G| = ni
2 = 24. 

(d) |1| = |4| = |5| = |8| = |9| = 24/12 = 2; |2| = |3| = 

24/24 = 1; |6| = |7| = 24/4 = 6. 

     (Check: the sizes total 24.) 

(e) |ker 1| = 24; 

|ker(2)| = |1| + |2| + |3| + |4| + |5| + |8| + |9| = 12; 

|ker(3)| = 4; |ker(4)| = |ker(5)| = 12; |ker(6)| = 2; 

|ker(7)| = 3; |ker(8)| = |ker(9)| = 1. 

 

(f) Only 8 and 9 are faithful. 
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(g) 

 

 

 

 

 

 

 

 

 

 

 

 

 

A = 1 + 2 + 3 + 5 + 6 

B = 1 + 2 + 3 + 5 + 7 

C = 1 + 2 + 3 + 4 + 5 + 8 + 9 

D = 1 + 2 + 3 + 5, E = 2 + 3 + 9, F = 3 + 5 

G = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 

H = 2 + 3 

K = 3 

 

(h) Z(G) is the union of all the classes of size 1 and 

consists of classes 2, 3.  Z(G)  C2. 

G is the intersection of the kernels of the linear 

representations and consists of classes 1, 2, 3 and 5. It 

has order 6 but is clearly not isomorphic to S3 (it has a 

normal subgroup of order 2) so it is isomorphic to C6. 
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(i) For an element g of order 3 the only possible 

eigenvalues for ((g)) are 1,  and 2. Hence these are 

the only possible values for linear characters . By 

inspecting the table we see that the only possibilities for 

elements of order 3 are 1, 2, 3 and 5. But 3 ={I} 

and the elements of 2 are in a subgroup of order 2. Now 

5, being in a subgroup of order 3 must consist of 2 

elements of order 3. These account for all the elements 

of order 3 in G  C3  and so 1 must consist of the 2 

elements of order 6. 

 

EXERCISE 6: The conjugates of 5 must be 6 and the 

conj of 7 must be 8.  2 must be the trivial character.  

4
−1 = 7; |1| = 1, |G| = 48, deg 1 = 3, so the remaining 

entries in 4, 7 are 0, 6
−1 = 2, 1(5) = 3 by 

orthogonality with 1. 

 1 2 3 4 5 6 7 8 

size 1 3 3 16 3 3 16 3 

1 3 −1 −1 0 3 −1 0 −1 

2 1 1 1 1 1 1 1 1 

3 1 1 1  1 1 2 1 

4 1 1 1 2 1 1  1 

5 3 1 −1+2i 0 −1 1 0 −1−2i 

6 3 1 −1−2i 0 −1 1 0 −1+2i 

7 3 −1+2i 1 0 −1 −1−2i 0 1 

8 3 −1−2i 1 0 −1 −1+2i 0 1 

order 1 4 4 3 2 4 3 4 

 


