7. REPRESENTATIONS OF
FINITE GROUPS

§ 7.1. Review of Relevant Linear Algebra

As we saw earlier, every finite group is isomorphic
to a group of matrices. The advantage of the matrix
disguise is that we can use all the resources of linear
algebra. So to help us study a particular group, G, we
consider matrix groups that are isomorphic to (or more
generally, homomorphic images of) G.

But first a quick review of linear algebra. You
remember that square matrices have determinants and
that the determinant of a product is the product of the
determinants. They also have eigenvalues and these are
related to the determinant in that the determinant of a
matrix is the product of its eigenvalues. The sum of the
eigenvalues is another important quantity associated with
a matrix — it’s the trace.

The trace of a matrix is simply the sum of its
diagonal entries. The off-diagonal components are
ignored. With so much information thrown away it’s
amazing that it’s of much use. In linear algebra trace is
hardly mentioned. We learn that trace is equal to the sum
of the eigenvalues and so it’s a useful little check on
eigenvalue calculations. That’s all. But for representation
theory it will become our most valuable tool!

You’ll need to recall that similar matrices have the
same eigenvalues, and hence the same determinant and,
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most importantly, the same trace. Remember too that if a
matrix satisfies a polynomial equation the eigenvalues
satisfy the same equation. Since we’ll be dealing with
finite groups the matrices that will arise in our
representations will satisfy equations of the form A™ =1,
The eigenvalues will therefore be roots of unity.

Associated with eigenvalues are eigenvectors. A
matrix is diagonalisable (similar to a diagonal matrix) if
and only if it there’s a basis of eigenvectors. Matrices of
finite order are diagonalisable so all the matrices that arise
in the representation of finite groups will be
diagonalisable.

Finally you’ll need to know a little of the theory of
inner product spaces. These are vector spaces with an
inner product (u | v) satisfying certain axioms. The square
of the length of a vector u is (u | u) and a unit vector is
one whose length is 1. Two vectors u, v are orthogonal
if (u|v) =0 and an orthonormal basis is a basis of
mutually orthogonal unit vectors.

\/ 5’)
§ 7.2. Representations Nﬂ ‘%:‘-:-l
A representation of degree n (A & y\\
Jb

of a group G over the field F is

defined to be a homomorphism

p: G— GL(n, F) for some n. By the first isomorphism
theorem the image of a representation p is a group of n x
n matrices that’s isomorphic to the quotient group
Glker(p).
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A linear representation is a representation of
degree 1. This is an important special case. Of course a 1
x 1 matrix behaves like its one and only component so a
linear representation is essentially a homomorphism to F¥,
the group, under multiplication, of the non-zero elements
of the field F.

Among the linear representations is the so-called
trivial representation. The trivial representation is t(g)
=1forall g € G. Not very exciting perhaps, but the trivial
representation is as important to representation theory as
the number O is to arithmetic or the empty set to set
theory. The trivial representation squeezes the group
entirely into one element so that no information about the
group remains. The kernel of the trivial representation is
the whole group. At the other end of the spectrum are the
faithful representations.

A representation is faithful if its kernel is trivial.
The image under a faithful representation is isomorphic
to the group itself. It might seem that these are the best
representations because they don’t lose any information.
But a suitable collection of unfaithful representations is
usually more useful.

Example 1:
The following are some of the representations of
the Klein Group V., with presentation
(A, B| A% B? AB = BA).
To begin with there’s the trivial representation:
(1) =1, t(A)=1,t(B) =1, 1(AB) = 1.
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Then there are three other linear representations. Since
every element of the group satisfies g2 = 1, a linear
representation must map each element to a complex
number satisfying x? = 1. So the linear representations of
G are:

1 A B AB
] 1 1 1 1
a 1 1 -1 -1
B 1 -1 1 -1
Y 1 -1 -1 1

Then there’s a faithful representation that maps A to
-10 10 -10
(0 1) Bto(o_lj,andABto(O _J.

If G is a group of permutations we can represent
each element g by the corresponding permutation matrix,

(@) where:
_JLifg() =]
i = {o if (i) # |

Such a representation is called a permutation
representation. It will always be faithful.

Cayley’s theorem shows that every finite group can
be considered as a group of permutations on itself since,
for g € G, the map x—xg is a permutation n(g) of G
and = is a homomorphism. If G has order n we can
represent m(g) by an n x n permutation matrix. This
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permutation representation is called the regular

representation.

Example 2: The regular representation for V, above is:

1000 100 0010 0001
0100 1000 0001 0010
"{éo1éj’A—90001 ,B—>{1000|:AB—>{0100]-
00 010 010 100

Two representations p, ¢ are equivalent if there’s an
invertible matrix S such that:
p(g) =Sto(g) Sforallg e G.

Example 3:
The representations of (A | A3 = 1) include:
I A A?
1 1 1 1
p2| 1 ® o’
P3

P4

o1

53

)

100
010
00

010
001
100

001
100
010

p1 is the trivial representation.

p1, P2 are linear representations.

p2 — pa are faithful representations.
pa4 1S the regular representation.
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Example 4:
The representations of Sz include:

320

| (123) (132) (12) (13) (23)
| 1 1 1 1 1 1
p| 1 1 1 1 -1 1
p3 (1 Oj (0 —1] (—1 1} (0 1) 1-1) |(-10
01 1-1 -10 10 0-1 -11
P4 (1 Oj [1 Oj (1 O) [1 0] 10 10
01 01 01 0- 0-1 0-1
Ps (10j [0) o} (032 o} (01) 00?) | (0w
01 0w? 0w 10 ® 0 ®20
ps | (100 010 001 010 001 100
010 001 100 100 010 001
00 100 010 00 100 010
where o = 2", Also the following, p:
| (123) (132)
0000 1000 0100
010000 001000 100000
001000 100000 010000
000100 000010 000001
000010 000001 000100
00001 0010 0001
(12) (13) (23)
0010 0001 00001
000001 000100 000010
000010 000001 000100
100000 010000 001000
001000 100000 010000
1000 0100 10000



e 1, p2 are linear representations; ps, ps and ps have
degree 2, ps has degree 3 and p7 has degree 6.

p1 is the trivial representation.

ps and py are permutation representations.

p7 is the regular representation.

ps3, Ps, P and p are faithful.

pz is equivalent to ps since S™1p3(g)S = ps(g) where

S—(l 1]
o 1tw)

§ 7.3. Characters of Groups

As rich as matrices are, they’re a little too bulky.
So instead of considering the matrices themselves we
consider their traces.

The trace of a matrix is the sum of the diagonal
components so it’s a very easy quantity to calculate —
much easier than determinants or eigenvalues. But it’s
closely related to eigenvalues in that the trace of a matrix
is the sum of the
eigenvalues. And
similar matrices have
the same trace.

The character over a field F of a representation p
of a finite group G is the map y: G — F defined by:

%(9) = trace p(9).
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Example 5:
The character of ps, in Example 3, is:

| (123) (132) (12) (13) (23)
wl2l -1 ] -1 ] o]o]o
Remember that 1 + ® + ®? = 0.

Concepts such as ‘degree’, ‘faithful’ ‘regular’ and
‘trivial’ extend to characters. So the regular character of
Ss is the character of the regular representation, pz, in
example 2. Itis:

I (123) (132) (12) (13) (23)
v|6| O 0 0 0 0

Theorem 1:

(1) Equivalent representations have the same character.
(2) Characters are constant on conjugacy classes.

Proof: Both of these follow from the fact that similar
matrices have same trace. For example if the
representation p is equivalent to o then there exists an
invertible matrix S such that p(g) = Sc(g)S and, being
similar, these have the same trace. © %

We can easily read off the degree of a character

(meaning the degree of the corresponding representation)
by simply looking at its value on 1.
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Theorem 2: The degree of a character vy is ¢ (1).

Proof: If p is the representation of degree n that
corresponds to the character y then p(1) is the n x n
identity matrix whose trace is n. ©%

There’s a shortcut we can use for permutation
representations. We can pass directly from the
permutations to the character without having to think
about the matrices.

Theorem 3: If y is a permutation character, x(g) is the
number of symbols fixed by g.

Proof: If p is the permutation representation itself then
the i-j entry of p(g) is 1 if g(i) = j and it is O otherwise so
v(g) is simply the number of 1’s on the diagonal. ©%

Example 6: If G = S, and y is the permutation character,
v ((123)) = 1, since (123) fixes 1 element, % ((12)) = 2, x(I)
=4 and %((1234)) =0.

Theorem 4: If y is a character of G over C of degree n
and g € G has order m then y(g) is a sum of n numbers,
each of which isan m™" root of 1.

Proof: If g™ =1 and p is the corresponding representation
then p(g)™ is the n x n identity matrix I. The matrix p(g)
is thus an n x n matrix and so has n eigenvalues over C.

Each of these must satisfy the equation L™ = 1 and so be
an m™" root of 1. ©%
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Example 7: If g is an element of order 2 and y is a
character of degree 3, corresponding to the representation
p, then the eigenvalues of p will be £1. So ¥(g) € {3, 1,
-1, -3}. If g hasorder 3 and y is a character of degree
2, corresponding to the representation p, then the
eigenvalues of p will be two values chosen from 1, o,
o?, with possible repetitions. The possibilities for ¢(g) are
thus 2, 2m, 20, 1+ 0 =—0%, 1 + 0’ = - and © + ©? =
-1.

Theorem 5: The characters, over C, of an element of
finite order and its inverse are complex conjugates.
Proof: The eigenvalues of p(g™t) are the inverses of those
for p(g). But these eigenvalues are roots of unity and so
lie on the unit circle. Hence their inverses are the same as
their conjugates. And the sum of these conjugates is the
conjugate of the sum. ©%

Example 8: If y is a character of a group of permutations
and %((1234)) =1 + 3i then %((1432)) =1 - 3i.

Theorem 6: If x is the character of a representation p over
C of degree n of a finite group G and g € G then

(@) <n.
Proof: If the eigenvalues of p(g) are A1, Az, ..., An then

A+ A+ ... 7\,n| < || + Ao + ... |7Ln| =n. ©%
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Theorem 7: y(g) = deg y if and only if g € ker(p).

Proof: Let n = deg y. The sum of n roots of 1 is equal to
n if and only if they’re all 1. If p is a corresponding
representation then p(g), is diagonalisable with all its

eigenvalues equal to 1 and so must be the identity matrix.
O©%

Example 9: The characters of the above representations
p1 to p7of S; are:
(123) (132) (12) (13) (23)

|
wll] 1 [ 1 1171
w1l 1 1 [alala
w2l 1 [ 1 [o]o]o
w2l 2] 2 ]o]o]o
w2l 1 [ 1 [o]o]o
w3 0 | 0o [ 1171
w16/ 0 ] 0o o] olo

Example 10: The characters of S, include the following.
(Since all permutations with a given cycle structure are
conjugate they have the same characters, so we need only
list the characters by cycle structure.)

I (xx) (xxx) (xxxx) (xx)(xx)

1] 1 1 1 1 trivial

1| -1 1 -1 1 odd/even

4| 2 1 0 0 permutation
241 O 0 0 0 regular
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§ 7.4. Class Functions
A class function for G over a field F is a map:
G—F which is constant on conjugacy classes.

Example 11: Some class functions for S are:

I (12) (13) (23) (123) (132)
17| -5 | 5| -5 T T
42| Ya | Y | Y | 1+ | 1+
1 1 1 1 1 1

Theorem 8: The set of class functions of a group G over
a field F is a vector space CF(G, F) over F and its
dimension over F is the number of conjugacy classes of
G.

Proof: It’s easily checked that the class functions form a
vector space under the usual operations. A basis is the set
of class functions, which take the value 1 on some
conjugacy class and 0 on the others. The number of these
is the number of conjugacy classes. © %

Example 12: A basis for the space of class functions of
S;over Cis:

I (12) (13) (23) (123) (132)

ee|1] O 0 0 0 0

e2{0] 1 1 1 0 0

es{0] O 0 0 1 1
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The class functions given in Example 11 are expressible
(uniquely) as linear combinations of ey, e, e; as:

17e; —5e; + mes;

—42e1 + ¥ae, + (L +1)es and

er+er+es.

A character y is reducible if y =¥ + Q for some
characters ¥, Q. If not, it is irreducible. Irreducible
characters are the basic building blocks of group
characters.

Theorem 9: Linear characters are irreducible.
Proof: Suppose y is linear. If y =¥ + Q for characters ¥

and Q, then deg y = deg ¥ + deg Q > 2, a contradiction.
©Y

Theorem 10: Every character is a sum of irreducible
characters.

Proof: We prove this by induction on the degree of a
character. If y is reducible, x =¥ + Q for characters ¥,
Q. By induction, each is a sum of irreducible characters
and hence so too is y. ©%

Certainly if a character is linear we know that it’s
irreducible. But there are irreducible characters of larger
degrees. For example y3 in Example 9 is irreducible. How
can we know this? After all it can be broken up as the sum
of the two class functions ¥ and Q.
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I (123) (132) (12) (13) (23)
va3|2| -1 -1 0 0 0
Pil|-1+i|-1+i| 1 1 1
Q1| —i —i -1 -1 -1

How do we know that ¥ and Q aren’t characters?
That’s not difficult because if ¥ was a character —1 + i
would have to be a cube root of 1.

But how do we know that there isn’t some other
decomposition in which the pieces are both characters?
The answer is to make the space of class functions into an
inner product space.

From now on we will be doing what is called
ordinary representation theory. This simply means that
the field over which we operate is C, the field of complex
numbers. One can do representation theory over other
fields but sometimes things don’t go as nicely as they do
over C. There are three reasons. Finite fields involve
primes that can give problems if they divide the group
order. In C no element (except the identity) has finite
additive order, or to use technical terminology, C has
‘characteristic zero’. But R and Q also have characteristic
zero. What’s wrong with them? Their trouble is that
they’re not algebraically closed. We may get matrices that
fail to have eigenvalues in R or in @, which makes life
more complicated. The third reason why C works so
beautifully is that we can exploit the concept of complex
conjugates.
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We make CF(G, C) into an inner product space by
defining the inner product of two class functions by

(x|¥) = éZz(g)@ :

Example 13: In the above table all three rows represent
class functions.

(W) = 3 [2+ 2(-1)(~1-i) + 0]

= £ (4 +2i) and
Q) = % [1+2(-i)(i) +3(-1)(-1)] =1.

§ 7.5. The Fundamental Theorem of

Characters

Theorem 11: (Fundamental Theorem of Characters)
The irreducible characters of a finite group G over C form
an orthonormal basis for CF(G, C). ©

We won’t be proving this theorem. To do so would
take us far from group theory into ring theory and the
theory of modules over non-commutative rings. Instead
we’ll examine the consequences of this important
theorem.

Theorem 12: The number of irreducible characters of a

finite group G, over C is equal to the number of conjugacy
classes of G.
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Proof: We saw already that the dimension of CF(G, C)
over C is the number of conjugacy classes. ©%

Theorem 13: If y, 'Y are distinct irreducible characters of
a finite group G over C:

> 2(9)¥(g) =0.

geG
Proof: Distinct irreducible characters are orthogonal
class functions. ©%

Theorem 14: If y is an irreducible character of a finite
group G over C then:

29 =16

geG
Proof: Irreducible characters have unit length. ©%

Theorem 15: Suppose G is a finite group with irreducible

characters 1, ... , yn over C. If y is any character,
expressible as a sum of irreducible characters by
¥ = Zmijy; then:

(1) for each i, mi = (i | xi);

(2) (xly) = =miZ.
Proof:

(1) ey = Zmixilen = mixilxy = mi.
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n
(2 Gy = 2o mimj (i | %)

ij=1
n
= > mi?(yi| i) by orthogonality
=1
n
= > mi? since each |yi|= 1. ©%
i=1

Corollary: A character y is irreducible if and only if
=1

Theorem 16: If @ is the regular character and 3, ... , yk
are the irreducible characters with degrees n, ... ,ng then
O = 2njyi.

Proof: ®(g) = |G| if g =1 and 0 otherwise.
So (@ | iy = ni. ©%

Theorem 17: If y, ..., yk are the irreducible characters
with degrees ny, ... ,nk then Zn;i? = |G|.

Proof: If @ is the regular character, (@ | ®) = |G| = Zn;°.
O
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§ 7.6. Character Tables

The character table for a finite group G, over C,
gives the value of each irreducible character on each
conjugacy class. Denote the value of y; on an element of
the conjugacy class I'j by yi(I';) or more simply as y;j.
Because the number of irreducible characters is equal to
the number of conjugacy classes the table is square. It’s
also useful to record the sizes of the conjugacy classes and
the orders of their elements as extra parts of the character
table.

class Th={1} I> .. I%
size 1 hy ... hg
Y1 1 1 (.11

XZ n2 X22 XZk

Xk nk sz ka
order 1 mz ... Mg

Theorem 18: The character table of a finite group G, over
C, has the following properties:

k
1) Zhi =[Gl
k
(2) X0 =l6l;
k - .
(@) 2h 7y = {|gl'{f'iijj (orthogonality of the rows);
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o [Oifiz]
(4) tzll Xi Xy = |hg| ifi= | (orthogonality of the columns).

(Here y;j is the value of the irreducible character y; on the
elements of the conjugacy class I,
n; is the degree of y; and
h; is the size of Tj.)
Proof: (1) is just the class equation;
(2) is theorem 17;
(3) is the fundamental theorem of characters
(Theorem 11).

If A is the matrix (a;) where a; = \/hi/|G| x;; then (3)
implies that A is a unitary matrix, that is A A* = | where
A* is the conjugate transpose of A.

It follows that A*A = | which gives (4). ©%

Example 14: The following is the character table for a
certain group G.

class T I, I's Is
size 1 3 4 4
A1 1 1 1 1
| 1 1 o %
A3 1 1 ®? ®
Y4 3 -1 0 0
order 1 2 3 3

Here o and w? are the two non-real cube roots of unity.
Remember that they’re conjugates of one another. And
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never forget that 1 + ® + ®? = 0. That often comes in
handy!

We can see that |G| =1+ 3+ 4 + 4 =12. Note too
that 12 = 12 + 12 + 12 + 32, the sum of squares of the
degrees of the irreducible characters.

G has 3 elements of order 2 (in I';) and 8 of order 3 (in
each of I's and I's).

Note the orthogonality of the rows. For example
with y, and 3 we get:
11+ 311+ 400 +40°0°=4+ 40 + 40 = 0. And
the sums of squares of the moduli of the entries along each
row (suitably weighted by the class sizes) are all 12.
Along the second row it is:

12+ 3(1%) + 4|of* + 4|0?| = 12
and along the third row it is:
32+3.12+40+4.0=12.

Note the orthogonality of the columns. For
example taking the 3rd and 4th columns we get 1.1 + ®.®
+.0%.0° =1+ o®+ o = 0. Taking the sum of squares of
the moduli down each column you get the order of the
group, 12, divided by the class size. For example, down
column2wegetl+1+1+1=4=12/3anddown column
4wegetl+1+1+0=3=12/4.

The “~1” entry is the trace of a 3 x 3 matrix. This
is the sum of the three eigenvalues. Now each of these
eigenvalues must be +1 since the elements of I', have
order 2. So we can infer that the eigenvalues are 1, -1, 1.
The zero entries in the last row are each the sum of 3 cube
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roots of unity. The only way to get a zero sum from 3 cube
roots of unity is to take exactly one of each. So we can
infer that the 3 x 3 matrices that arise here must have
distinct eigenvalues 1, ® and »?.

x1 1S clearly the trivial character. The regular
character: [12, 0, 0, 0] is expressible as a sum of
irreducible characters as y; + y2 + y3 + 3y4.

As can be seen a considerable amount of
information about the group (and the representations
themselves) can be recovered from the character table. Of
course one has to know something about the group in the
first place to be able to construct the character table. But
we can learn new things about a group by using
characters.

§ 7.7. Examples of Character Tables
Example 15: The character table of the trivial group 1 is:
class 1
size 1
%L1
order 1

Example 16: The character table of C, = (AJA% = 1) is:
class 1 A
size 1
xl 1 1
1
1

A2
order
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Since the group generated by the integer —1 is C,, we have
a representation by 1 x 1 matrices: 1 — (1), A —> (-1) and
the character of this linear character is y,. Since the sum
of squares of the degrees of 1 and y2 is 2, the order of C,
these are the only irreducible characters.

Example 17: The character table of C3 = (AJA% = 1) is:

class 1 A A2
size 1 1 1
vi]l |1 |1
vll|lo |
wll|elo
order 1 3 3

Clearly the character tables of cyclic groups are easily
calculated. For C, there are n linear characters,
expressible in terms of n’th roots of unity.

Example 18:
The character table of V. = (A, BJA2=B?=1, BA = AB)
is:

class 1 A B AB
size 1 1 1 1
vill|1 |1 |1
w11 |-1]-1
a1 |-1]1 |-1
vl |-1]-1]1

order 1 2 2 2



Viewed as 1 x 1 matrices these are clearly representations.
In the next chapter we will see how to manufacture the
character table of a direct product out of the character
tables of the factors and, as a result, we will be able to
easily calculate the character table of any finite abelian
group. So let us turn our attention to the smallest non-
abelian group.

Example 19: The character table of Sz is:

class 1 (xxx) (xx)
size 1 2 3
vi| 1 1 1
A2 1 1 —1
w|2] -1 0
order 1 3 2

x1 1S, as usual, the trivial character.
2 1S the character that maps even permutations to 1 and
odd permutations to —1.

By the Fundamental Theorem of characters, since
there are only 3 conjugacy classes, there must be only 3
irreducible characters. So y3 has to be found.

Suppose the degree of y3 = n. Since the sum of
squares of the degrees has to total the group order, we
have 12 + 12 + n? = 6 and so n = 2. Using orthogonality of
columns we can complete the table as above.
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Here we’ve used fairly simple techniques. For
larger groups we need to develop more advanced
techniques, which we do in the next chapter.
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EXERCISES FOR CHAPTER 7

EXERCISE 1:
Examine the following character table for a finite group
G and answer the following questions. Give adequate
reasons for your answers.

In I I's Iy

w11 ]1] 1
213 ]|-1]0 0
v 1|1 o| o
wll]l || o

(@) What is |G|?

(b) Find the sizes of the conjugacy classes.

(c) Find the orders of the kernels of each of the
corresponding irreducible representations.

(d) Which of the irreducible characters are faithful?
(e) Find the order of the elements in each conjugacy
class.

EXERCISE 2: Complete the following character table,
giving brief explanations as to how each entry is obtained.
I'n I I's TI's IS

x1

vl 1|1 1 -1
A3 0|-1] 0 0

X4 1 1 —1 l

vs | 1| -i| 1 -1
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EXERCISE 3: For the character table obtained in
exercise 2, compute the size and the order of the elements
of each of the conjugacy classes.

EXERCISE 4: Examine the following character table for
a finite group G and answer the following questions. Give
adequate reasons for your answers.

I'n I'o Iz TIs Is Ts I

vi|l1]1]1 1 1 1 1
| 1|11 ] 1 |1]-1] 1
wvvll|l|lo|e|l| o | o
wl|ll|1l|lo®| o |1l]|®| o
v|ll|1l]|lo| o |-1|-o|-
vl l| 1| o |-1]|-0]| -0
w6 ]-1]0l0o]o]o0] o

(@) What is |G|?

(b) Find the sizes of the conjugacy classes.

(c) Find the orders of the kernels of each of the
irreducible representations.

(d) Which of the irreducible representations are faithful?
(e) Draw the lattice diagram for all the normal subgroups
of G.

(f) Find Z(G) and G'. For each of them identify which
conjugacy classes they are built up from and give a well-
known group that it is are isomorphic to.

(9) Find the order of the elements in each conjugacy
class.
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(h) Express the following character as a sum of
irreducible characters:

I'n I'o I's TI's Is TIs I
vy |14 ] 7 | 2 2 1-6/01]0

EXERCISE 5: Examine the following character table
for a finite group G and answer the following questions.
Give adequate reasons for your answers.

In I, I's Iy Is Ie Iz TIs T

wl1]1]1] 1 111 1 |1
wl1l |11 1 |[1]-1]-1] 1 |1
vas|-112 2] -1|-12]0]0]| -1 |2
wll 1|11 ]1]-1]1]| -1 |2
vl 11|11 ]1]1]-1] -1 |2
wl-1]2|2| 1 |[-1]{0]0| 1 |=2
v -2]-2]2] 0 ]2[0]0] 0 |0
x| 1|22 | N3i |-1] 0|0 |~38|0
vo| 1|22 |8i|-1/0]0]| N3 |0

(a) How many conjugacy classes does G have?

(b) Which conjugacy class is {1}?

(c) What is |G|?

(d) Find the sizes of the conjugacy classes.

(e) Find the orders of the kernels of each of the
irreducible representations.

(F) Which of the irreducible representations are faithful?

341



(g) Draw the lattice diagram for all the normal
subgroups of G.

(h) Find Z(G) and G'. Identify which conjugacy classes
they are built up from and describe a well-known group
that they are isomorphic to.

(i) How many of the elements of G have order 3?

EXERCISE 6: Complete the following character table,

giving brief explanations as to how each entry is
obtained.

I'' I, Is T4 Is Te I7 I

size 3 3 16 3 3 3

y -1 -1 -1
X2 1
Y3 1 1 ol 1 1
A4 1 1 o’ 1 1 1
s | 3 —1+2i -1 1 —1-2i
A6
vi |3 1 -1 |-1-2i 1
) & -1|-1+2i

order 1 4 3 2 4 4

EXERCISE 7: Complete the following character table,
giving brief explanations as to how each entry is
obtained.
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I'n I': I's TI's Is Is I'7
size 1 1 6 4 4 4 4

A1

v |[1]1]1] o ®?
A3 1 1 1 0)2

Y4 2 -

s |2 —?

s 1
Y7

order 1 4 3
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SOLUTIONS FOR CHAPTER 7

EXERCISE 1: (a) 12; (b) 1, 3, 4, 4; (c) |ker p1| = 12, |ker
p2| =1, |ker ps| = |ker ps| = 4; (d) x2; (6) 1, 2, 3, 3.

EXERCISE 2: None of y, to ys are the trivial character
S0 1 must be trivial. Since i is not real its conjugate —i
must appear in that row, so I'; = I'; 1. We can therefore
complete columns 2 and 4. By orthogonality of columns
1 and 3 we deduce that deg xs = 4. The character table is
thus:

I'n I'o I's T'sa I5s

vl 1111
vl 1 [1]-i] -1
vl 4]10]|-1/0] 0
vel1|-1]1]-1|1
wvs| 1 |—i|1]i]|-1

EXERCISE 3: The group has order 20. We can now
compute the sizes of the conjugacy classes: 1, 5, 4, 5, 5.
Since the order is even the group must contain elements
of order 2. Their characters must be real so the elements
of order 2 must lie in I'; or I's or both. But the centraliser
of an element in I'; has order 5, so the elements of order
2 must lie in I's. Also since the group order, 20, is divisible
by 5 there must be elements of order 5. Clearly these can’t
lie inI'; or I'y since i has order 4. So they must lie in I's.
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Of course the only element of I'; has order 1, so that just
leaves I"; and I'4. Since I'y = I';7! they must all have the
same order. This must divide 20 and, since i has order 4,
their order must be divisible by 4. Thus they have order
exactly 4. The orders of the elements of the conjugacy
classes are thus 1, 4, 5, 4, 2 respectively.

EXERCISE 4:
(a) 42; (0)1,6,7,7,7,7,7
(c)42,21,14,7,7,1;,  (d) x7
e)
G
H K
L
1

H=T1+12+I15, K=I[1+1+I3+14, L=T1+1>
HZ2(G)=1,6'=L=C;

(9) Since L = C; the elements of I"; have order 7. Since
|G| = 42 there must be elements of order 2, 3. The only
class that could contain elements of order 2 is I's. By
considering the linear characters we see that the order of
the elements of I'g, I'; is a multiple of 6. The only
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multiples of 6 dividing 42 are 6 and 42 and G is clearly
not cyclic. So the elements of I's, I'7 must have order 6
leaving the elements of I's, I'4 being the ones of order 3.
(Note that since I'; =I's ™t and I'71 = T'g the elements in
each of these pairs of conjugacy class have the same
order.)

The elements of have orders 1,7,3,3,2,6,6

(h) x = myy + ... + myy7 where m; = (y|i) SO
%= At 3x2t 2xs + 2x6 + -

EXERCISE 5:
(a) 9 conjugacy classes;
(b) I's (largest modulus);
() |G| = Zni? = 24.
(d) [Ta| = [ = [I's| = [I'e| = |To| = 24/12 = 2; || = |T's| =
24124 = 1; T'| = [I'7| = 24/4 = 6.
(Check: the sizes total 24.)
(e) |ker ps| = 24;
ker(p2)| = [[a| + |T2| + [['g| + [[a| + |Ts| + [Tg] + [['e| = 12;
[ker(ps)| = 4; [ker(pa)| = [ker(ps)| = 12; [ker(pe)| = 2;
|ker(p7)| = 3; |ker(ps)| = [ker(po)| = 1.

(f) Only ps and pg are faithful.
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()

A=T1+I1+I3+[5+1%
B=T1+I+I3+5+17
C=T1+0+I[3+I[4+I5+1g+1y
D=T1+12+I13+I5,E=1+13+19 F=13+1T175
G=T1+I+I3+I4+I5+Tg+7+I[g+1Y
H=1>+13%

K:rg

(h) Z(G) is the union of all the classes of size 1 and
consists of classes 2, 3. Z(G) = C,.

G’ is the intersection of the kernels of the linear
representations and consists of classes 1, 2, 3 and 5. It
has order 6 but is clearly not isomorphic to Ss (it has a
normal subgroup of order 2) so it is isomorphic to Ce.
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(i) For an element g of order 3 the only possible
eigenvalues for (p(g)) are 1, ® and w? Hence these are
the only possible values for linear characters y. By
inspecting the table we see that the only possibilities for
elements of order 3 are I'y, I';, I's and I's. But I's ={1}
and the elements of I, are in a subgroup of order 2. Now
I's, being in a subgroup of order 3 must consist of 2
elements of order 3. These account for all the elements
of order 3in G’ = C; and so I'; must consist of the 2
elements of order 6.

EXERCISE 6: The conjugates of ys must be ys and the
conj of y7 must be ys. 2 must be the trivial character.
[,t=T7; || =1, |G| = 48, deg y1 = 3, so the remaining
entries in Ty, Ty are 0, Tgt =Ty, 41(I's) = 3 by
orthogonality with I';.
In 1Io I's T4 I's Te I7 I's
size 1 3 3 16 3 3 16 3

v [3] -1 | -1 |0|3] -1 |0]| -1
v |1 1 1 111 1 1 1
v |1] 1 1 lol2] 1 le2| 1
Y4 1 1 1 o?| 1 1 0) 1
s |3 1 |-1+2i| 0 |-1| 1 0| -1-2i
v |3 1 |-1-2i|0|-1| 1 0 | —1+2i
vr |3 |-1+2i| 1 0|-1]-1-2i| O 1
vs | 3 |-1-2i 1 O|-1|-1+2i| O 1
order 1 4 4 3 2 4 3 4
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